Annals of Fuzzy Mathematics and Informatics Volume 12, No. 6, (December 2016), pp. 893–902 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Invited Paper

Bipolar-valued fuzzy subalgebras based on bipolar-valued fuzzy points

YOUNG BAE JUN, KUL HUR

Received 1 December 2016

ABSTRACT. The notions of bipolar-valued fuzzy point, contained in relation (\Subset) and bipolar quasi-coincident with relation (\mathcal{Q}) are introduced. Using these notions, the concept of bipolar-valued fuzzy subalgebra of type (Ω, Θ) where Ω and Θ are any two of $\{\Subset, \mathcal{Q}, \Subset \lor \mathcal{Q}, \blacksquare \land \mathcal{Q}\}$ with $\Omega \neq \blacksquare \land \mathcal{Q}$ is introduced, and related properties are investigated. Conditions for the negative and positive 0-supports to be subalgebras are provided. A characterization of a bipolar-valued fuzzy subalgebra of type ($\Subset, \blacksquare \lor \mathcal{Q}$) is given, and conditions for a bipolar-valued fuzzy set to be a bipolar-valued fuzzy subalgebra of type ($\mathcal{Q}, \blacksquare \lor \mathcal{Q}$) are considered.

2010 AMS Classification: 06F35, 03G25, 03B52

Keywords: Bipolar-valued fuzzy point, Bipolar quasi-coincident, Bipolar-valued fuzzy subalgebra of type (Ω, Θ) , Negative (resp., positive) 0-support.

Corresponding Author: Y. B. Jun (skywine@gmail.com)

1. INTRODUCTION

The notion of bipolar-valued fuzzy set is introduced by Lee [9] as an extension of fuzzy set, and then this notion is applied to BCK/BCI-algebras, CI-algebras, semigroups, Lie algebras and hyper BCK-algebras etc. (see [1], [3], [4], [5], [6], [7], [8], [13], [14]). The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [12], played an important role to generate some different types of fuzzy notions in several algebraic structures.

In this paper, as a generalization of fuzzy points and quasi-coincidence in fuzzy sets, we introduce the notion of bipolar-valued fuzzy point and bipolar quasi-coincidence in bipolar-valued fuzzy sets. Based on these notions, we introduce the concept of bipolar-valued fuzzy subalgebra of type (Ω, Θ) where Ω and Θ are any two of $\{ \Subset, \mathcal{Q}, \Subset \lor \mathcal{Q}, \Subset \land \mathcal{Q} \}$ with $\Omega \neq \Subset \land \mathcal{Q}$, and investigate related properties. We provide

conditions for the negative and positive 0-supports to be subalgebras. We discuss a characterization of a bipolar-valued fuzzy subalgebra of type (\Subset , $\Subset \lor Q$). We consider conditions for a bipolar-valued fuzzy set to be a bipolar-valued fuzzy subalgebra of type (Q, $\Subset \lor Q$). Using a a bipolar-valued fuzzy subalgebra of type (\Subset , $\Subset \lor Q$), we make a a bipolar-valued fuzzy subalgebra.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras with type $\tau = (2,0)$. By a *BCI-algebra* we mean a system $X := (X, *, 0) \in K(\tau)$ in which the following axioms hold:

- (i) ((x * y) * (x * z)) * (z * y) = 0,
- (ii) (x * (x * y)) * y = 0,
- (iii) x * x = 0,
- (iv) $x * y = y * x = 0 \implies x = y$,

for all $x, y, z \in X$. If a BCI-algebra X satisfies 0 * x = 0, for all $x \in X$, then we say that X is a BCK-algebra. We can define a partial ordering \leq by

$$(\forall x, y \in X) \ (x \le y \iff x * y = 0).$$

In a BCK/BCI-algebra X, the following hold:

(a1) $(\forall x \in X) (x * 0 = x),$

(a2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$

for all
$$x, y, z \in X$$
.

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X, if $x * y \in S$ for all $x, y \in S$. For our convenience, the empty set \emptyset is regarded as a subalgebra of X.

We refer the reader to the books [2] and [11] for further information regarding BCK/BCI-algebras.

Let X be the universe of discourse. A bipolar-valued fuzzy set $f = (X; f_n, f_p)$ in X is an object having the form

$$f = \{ (x, f_n(x), f_p(x)) \mid x \in X \},\$$

where $f_n : X \to [-1, 0]$ and $f_p : X \to [0, 1]$ are mappings. The positive membership degree $f_p(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set

$$f = \{ (x, f_n(x), f_p(x)) \mid x \in X \},\$$

and the negative membership degree $f_n(x)$ denotes the satisfaction degree of x to some implicit counter-property of $f = \{(x, f_n(x), f_p(x)) \mid x \in X\}$. If $f_p(x) \neq 0$ and $f_n(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for $f = \{(x, f_n(x), f_p(x)) \mid x \in X\}$. If $f_p(x) = 0$ and $f_n(x) \neq 0$, it is the situation that x does not satisfy the property of $f = \{(x, f_n(x), f_p(x)) \mid x \in X\}$ but somewhat satisfies the counter-property of $f = \{(x, f_n(x), f_p(x)) \mid x \in X\}$. It is possible for an element x to be $f_p(x) \neq 0$ and $f_n(x) \neq 0$ when the membership function of the property overlaps that of its counter-property over some portion of the domain (see [10]). For the sake of simplicity, we shall use the symbol $f = (X; f_n, f_p)$ for the bipolar-valued fuzzy set $f = \{(x, f_n(x), f_p(x)) \mid x \in X\}$. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other (see [10]).

3. BIPOLAR-VALUED FUZZY SUBALGEBRAS

In what follows, let X be a BCK/BCI-algebra unless otherwise specified. A bipolar-valued fuzzy set $f = (X; f_n, f_p)$ can be represented as more wide version:

(3.1)
$$f: X \times X \to [-1,0] \times [0,1], \ (x,y) \mapsto (f_n(x), f_p(y)).$$

If we take x = y in (3.1), then it can be written as follows:

(3.2)
$$f: X \to [-1,0] \times [0,1], \ x \mapsto (f_n(x), f_p(x))$$

which is originally defined bipolar-valued fuzzy set.

For any $(a,b), (x,y) \in X \times X$, we use the notation $(a,b) \neq (x,y)$, if $a \neq x$ and $b \neq y$.

Definition 3.1 ([7]). A bipolar-valued fuzzy set $f = (X; f_n, f_p)$ is called a bipolar-valued fuzzy subalgebra of X, if it satisfies:

(3.3)
$$f_n(x * y) \le \max\{f_n(x), f_n(y)\}, f_p(x * y) \ge \min\{f_p(x), f_p(y)\},$$

for all $x, y \in X$.

Given a point $(a, b) \in X \times X$, the bipolar-valued fuzzy set $f = (X; f_n, f_p)$ defined by

$$f(x,y) = \begin{cases} (\alpha,\beta) & \text{if } (x,y) = (a,b), \\ (0,0) & \text{if } (x,y) \neq (a,b), \end{cases}$$

where $(\alpha, \beta) \in [-1, 0) \times (0, 1]$ is called a bipolar-valued fuzzy point with support (a, b) and value (α, β) , and is denoted by $\langle (a, b); (\alpha, \beta) \rangle$. Also denote by a_{α} and (b, β) we mean an \mathcal{N} -point and a fuzzy point, respectively. Note that a bipolar-valued fuzzy point $\langle (a, b); (\alpha, \beta) \rangle$ contains an \mathcal{N} -point a_{α} and a fuzzy point (b, β) simultaneously.

Given a bipolar-valued fuzzy set $f = (X; f_n, f_p)$, we say that a bipolar-valued fuzzy point $\langle (a, b); (\alpha, \beta) \rangle$ is contained in $f := (X, f_n, f_p)$, denoted by $\langle (a, b); (\alpha, \beta) \rangle \equiv (X, f_n, f_p)$, if $a_\alpha \ni f_n$ and $(b, \beta) \in f_p$, that is,

(3.4)
$$f_n(a) \le \alpha$$
, and $f_p(b) \ge \beta$.

We say that a bipolar-valued fuzzy point $\langle (a,b); (\alpha,\beta) \rangle$ is bipolar quasi-coincident with $f := (X, f_n, f_p)$, denoted by $\langle (a,b); (\alpha,\beta) \rangle \mathcal{Q}(X, f_n, f_p)$, if $a_{\alpha}\varrho f_n$ and $(b,\beta) q f_p$, that is,

(3.5)
$$f_n(a) + \alpha + 1 < 0 \text{ and } f_p(b) + \beta > 1.$$

If $\langle (a,b); (\alpha,\beta) \rangle \in (X, f_n, f_p)$ or $\langle (a,b); (\alpha,\beta) \rangle \mathcal{Q}(X, f_n, f_p)$, we denote it by

$$\langle (a,b); (\alpha,\beta) \rangle \Subset \lor \mathcal{Q}(X, f_n, f_p).$$

895

Definition 3.2. A bipolar-valued fuzzy set $f = (X; f_n, f_p)$ is called a bipolar-valued fuzzy subalgebra of type (Ω, Θ) if whenever

 $\langle (x,y); (\alpha_1,\beta_1) \rangle \Omega(X, f_n, f_p) \text{ and } \langle (a,b); (\alpha_2,\beta_2) \rangle \Omega(X, f_n, f_p),$

then $\langle (x * a, y * b); (\max\{\alpha_1, \alpha_2\}, \min\{\beta_1, \beta_2\}) \rangle \Theta(X, f_n, f_p)$, for all $(x, y), (a, b) \in X \times X$ and $(\alpha_1, \beta_1), (\alpha_2, \beta_2) \in [-1, 0) \times (0, 1]$, where $\Omega, \Theta \in \{ \Subset, \mathcal{Q}, \Subset \lor \mathcal{Q}, \Subset \land \mathcal{Q} \}$ with $\Omega \neq \Subset \land \mathcal{Q}$.

Given a bipolar-valued fuzzy set $f = (X; f_n, f_p)$, consider the sets

(3.6)
$$N(f;0) := \{ x \in X \mid f_n(x) < 0 \}, P(f;0) := \{ x \in X \mid f_p(x) > 0 \}$$

which are called the negative 0-support and the positive 0-support, respectively, of $f = (X; f_n, f_p)$.

Theorem 3.3. If $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\subseteq , \subseteq) or (\subseteq , Q), then the negative and positive 0-supports of $f = (X; f_n, f_p)$ are subalgebras of X.

Proof. If $f = (X; f_n, f_p)$ is zero, that is, $f_n(x) = 0$ and $f_p(x) = 0$, for all $x \in X$, then $N(f; 0) = \emptyset$ and $P(f; 0) = \emptyset$ which are subalgebras of X. Suppose that $f = (X; f_n, f_p)$ is nonzero, i.e., $f_n(x) \neq 0$ and $f_p(y) \neq 0$, for all $x, y \in X$. Assume that $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\Subset, \boxdot) . Let $x, y \in N(f; 0)$ and $a, b \in P(f; 0)$, for $x, y, a, b \in X$. Then $f_n(x) < 0$, $f_n(y) < 0$, $f_p(a) > 0$ and $f_p(b) > 0$. Note that

$$\langle (x,a); (f_n(x), f_p(a)) \rangle \subseteq (X; f_n, f_p) \text{ and } \langle (y,b); (f_n(y), f_p(b)) \rangle \subseteq (X; f_n, f_p).$$

If $f_n(x * y) = 0$ or $f_p(a * b) = 0$, then $f_n(x * y) = 0 > \max\{f_n(x), f_n(y)\}$ or $f_p(a * b) = 0 < \min\{f_p(a), f_p(b)\}$. Thus

 $\langle (x * y, a * b); (\max\{f_n(x), f_n(y)\}, \min\{f_p(a), f_p(b)\}) \rangle \overline{\Subset} (X; f_n, f_p),$

which is a contradiction. So $f_n(x * y) < 0$ and $f_p(a * b) > 0$, i.e., $x * y \in N(f; 0)$ and $a * b \in P(f; 0)$. Hence the negative and positive 0-supports of $f = (X; f_n, f_p)$ are subalgebras of X.

Now suppose that $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\subseteq, \mathcal{Q}) . Let $a, b \in N(f; 0)$ and $x, y \in P(f; 0)$ for $x, y, a, b \in X$. Then $f_n(a) < 0$, $f_n(b) < 0$, $f_p(x) > 0$ and $f_p(y) > 0$. If $f_n(a * b) = 0$ or $f_p(x * y) = 0$, then

$$f_n(a * b) + \max\{f_n(a), f_n(b)\} + 1 = \max\{f_n(a), f_n(b)\} + 1 \ge 0$$

or

$$f_p(x * y) + \min\{f_p(x), f_p(y)\} = \min\{f_p(x), f_p(y)\} \le 1.$$

Thus

$$\langle (a * b, x * y); (\max\{f_n(a), f_n(b)\}, \min\{f_p(x), f_p(y)\}) \rangle \overline{\mathcal{Q}}(X; f_n, f_p),$$

which is a contradiction because

$$\langle (a,x); (f_n(a), f_p(x)) \rangle \Subset (X; f_n, f_p) \text{ and } \langle (b,y); (f_n(b), f_p(y)) \rangle \Subset (X; f_n, f_p).$$
896

So $f_n(a * b) < 0$ and $f_p(x * y) > 0$, i.e., $a * b \in N(f; 0)$ and $x * y \in P(f; 0)$ for all $a, b, x, y \in X$. Hence the negative and positive 0-supports of $f = (X; f_n, f_p)$ are subalgebras of X.

Corollary 3.4. If $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\subseteq, \subseteq) or (\subseteq, Q) , then the intersection of negative and positive 0-supports of $f = (X; f_n, f_p)$ is a subalgebra of X.

Theorem 3.5. If $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\mathcal{Q}, \Subset) , then the negative and positive 0-supports of $f = (X; f_n, f_p)$ are subalgebras of X.

Proof. Let $x, y \in N(f; 0)$ and $a, b \in P(f; 0)$ for $x, y, a, b \in X$. Then $f_n(x) < 0$, $f_n(y) < 0$, $f_p(a) > 0$ and $f_p(b) > 0$. It follows that

$$\langle (x,a); (-1,1) \rangle \mathcal{Q}(X; f_n, f_p) \text{ and } \langle (y,b); (-1,1) \rangle \mathcal{Q}(X; f_n, f_p).$$

Since $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\mathcal{Q}, \Subset) , we have $\langle (x * y, a * b); (-1, 1) \rangle \Subset (X; f_n, f_p)$. If $f_n(x * y) = 0$ or $f_p(a * b) = 0$, then

$$f_n(x * y) = 0 > -1$$
 or $f_p(a * b) = 0 < 1$.

Thus

$$\langle (x * y, a * b); (-1, 1) \rangle \overline{\Subset} (X; f_n, f_p),$$

which is a contradiction. So $f_n(x * y) < 0$ and $f_p(a * b) > 0$, that is, $x * y \in N(f; 0)$ and $a * b \in P(f; 0)$ for all $x, y, a, b \in X$. Consequently, the negative and positive 0-supports of $f = (X; f_n, f_p)$ are subalgebras of X.

Corollary 3.6. If $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\mathcal{Q}, \Subset) , then the intersection of negative and positive 0-supports of $f = (X; f_n, f_p)$ is a subalgebra of X.

Theorem 3.7. If $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (Q, Q), then $f = (X; f_n, f_p)$ is constant on the negative and positive 0-supports of $f = (X; f_n, f_p)$, that is, f_n and f_p are constant on negative 0-support of $f = (X; f_n, f_p)$ and positive 0-support of $f = (X; f_n, f_p)$, respectively.

Proof. Assume that f_n is not constant on the negative 0-support of $f = (X; f_n, f_p)$. Then there exists $y \in N(f; 0)$ such that $\alpha_y = f_n(y) \neq f_n(0) = \alpha_0$. Thus either $\alpha_y < \alpha_0$ or $\alpha_y > \alpha_0$.

Suppose that $\alpha_y > \alpha_0$ and take $\alpha_1, \alpha_2 \in [-1, 0)$ such that $\alpha_2 < -1 - \alpha_y < \alpha_1 < -1 - \alpha_0$. Then $f_n(0) + \alpha_1 + 1 = \alpha_0 + \alpha_1 + 1 < 0$ and $f_n(y) + \alpha_2 + 1 = \alpha_y + \alpha_2 + 1 < 0$. Thus $0_{\alpha_1} \varrho f_n$ and $y_{\alpha_2} \varrho f_n$. Since

$$f_n(y*0) + \max\{\alpha_1, \alpha_2\} + 1 = f_n(y) + \alpha_1 + 1 = \alpha_y + \alpha_1 + 1 > 0,$$

we have $(y * 0)_{\max\{\alpha_1, \alpha_2\}} \overline{\varrho} f_n$.

Next suppose that $\alpha_y < \alpha_0$. Then

$$f_n(y) + (-1 - \alpha_0) + 1 = \alpha_y - \alpha_0 < 0.$$

897

Thus $y_{-1-\alpha_0} \rho f_n$. Since

$$f_n(y * y) + (-1 - \alpha_0) + 1 = f_n(0) - \alpha_0 = \alpha_0 - \alpha_0 = 0,$$

we get $(y * y)_{\max\{-1-\alpha_0, -1-\alpha_0\}} \overline{\varrho} f_n$. This is a contradiction. So f_n is constant on the negative 0-support of $f = (X; f_n, f_p)$.

Suppose that f_p is not constant on the positive 0-support of $f = (X; f_n, f_p)$. Then there exists $b \in X$ such that $\beta_b = f_p(b) \neq f_p(0) = \beta_0$. For the case $\beta_b < \beta_0$, if we choose $\beta_1, \beta_2 \in (0, 1]$ such that $1 - \beta_0 < \beta_1 < 1 - \beta_b < \beta_2$, then

 $f_p(0) + \beta_1 = \beta_0 + \beta_1 > 1$ and $f_p(b) + \beta_2 = \beta_b + \beta_2 > 1$,

i.e, $(0, \beta_1) q f_p$ and $(b, \beta_2) q f_p$. Since

$$f_p(b*0) + \min\{\beta_1, \beta_2\} = f_p(b) + \beta_1 = \beta_b + \beta_1 < 1,$$

it follows that $(b * 0, \min\{\beta_1, \beta_2\}) \overline{q} f_p$, which is a contradiction. If $\beta_b > \beta_0$, then $f_p(b) + (1 - \beta_0) = \beta_b + 1 - \beta_0 > 1$. Thus $(b, 1 - \beta_0) q f$. Since

$$f_p(b * b) + (1 - \beta_0) = f_p(0) + 1 - \beta_0 = \beta_0 + 1 - \beta_0 = 1,$$

we have $(b * b, \min\{1 - \beta_0, 1 - \beta_0\}) \overline{q} f_p$. This is a contradiction. So f_p is constant on the positive 0-support of $f = (X; f_n, f_p)$. Consequently, $f = (X; f_n, f_p)$ is constant on the negative and positive 0-supports of $f = (X; f_n, f_p)$.

Theorem 3.8. A bipolar-valued fuzzy set $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type $(\subseteq, \subseteq \lor Q)$ if and only if the following conditions are valid.

(3.7)
$$(\forall x, y \in X) \left(\begin{array}{c} f_n(x * y) \le \max\{f_n(x), f_n(y), -0.5\} \\ f_p(x * y) \ge \min\{f_p(x), f_p(y), 0.5\} \end{array} \right)$$

Proof. Suppose that $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type (\Subset , $\blacksquare \lor Q$). For any $x, y \in X$, assume that $\max\{f_n(x), f_n(y)\} > -0.5$. If $f_n(a * b) > \max\{f_n(a), f_n(b)\}$ for some $a, b \in X$, then there exists $\alpha \in [-1, 0)$ such that

$$f_n(a * b) > \alpha \ge \max\{f_n(a), f_n(b)\}.$$

Thus $a_{\alpha} \ni f_n$ and $b_{\alpha} \ni f_n$, but $(a * b)_{\max\{\alpha,\alpha\}} \exists \forall \varrho f_n$, a contradiction. So $f_n(x * y) \le \max\{f_n(x), f_n(y)\}$, whenever $\max\{f_n(x), f_n(y)\} > -0.5$, for all $x, y \in X$.

Now suppose that $\max\{f_n(x), f_n(y)\} \leq -0.5$. Then $x_{-0.5} \ni f_n$ and $y_{-0.5} \ni f_n$ which imply that $(x * y)_{\max\{-0.5, -0.5\}} \ni \lor \varrho f_n$. Thus $f_n(x * y) \leq -0.5$. Otherwise,

$$f_n(x*y) - 0.5 + 1 > -0.5 - 0.5 + 1 = 0$$
, i.e., $(x*y)_{-0.5} \overline{\varrho} f_n$.

This is a contradiction. Consequently, $f_n(x * y) \leq \max\{f_n(x), f_n(y), -0.5\}$, for all $x, y \in X$. If $\min\{f_p(x), f_p(y)\} < 0.5$, then $f_p(x * y) \geq \min\{f_p(x), f_p(y)\}$. For, suppose that $f_p(x * y) < \min\{f_p(x), f_p(y)\} \triangleq \beta$. Then $(x, \beta) \in f_p$ and $(y, \beta) \in f_p$, but $(x * y, \beta) = (x * y, \min\{\beta, \beta\}) \in \forall q \ f_p$, a contradiction. Thus

 $f_p(x * y) \ge \min\{f_p(x), f_p(y)\}, \text{ whenever } \min\{f_p(x), f_p(y)\} < 0.5.$

Now assume that

$$\min\{f_p(x), f_p(y)\} \ge 0.5.$$

Then $(x, 0.5) \in f_p$ and $(y, 0.5) \in f_p$, which imply that

$$(x * y, 0.5) = (x * y, \min\{0.5, 0.5\}) \in \lor qf_p.$$

898

Thus $f_p(x * y) \ge 0.5$. Otherwise, $f_p(x * y) + 0.5 < 0.5 + 0.5 = 1$, a contradiction. So, $f_p(x * y) \ge \min\{f_p(x), f_p(y), 0.5\}$, for all $x, y \in X$. Hence (3.7) is valid.

Conversely, let $f = (X; f_n, f_p)$ be a bipolar-valued fuzzy set satisfying the condition (3.7). Let $x, y \in X$ and $\alpha_1, \alpha_2 \in [-1, 0)$ be such that $x_{\alpha_1} \ni f_n$ and $y_{\alpha_2} \ni f_n$. If $f_n(x * y) \leq \max\{\alpha_1, \alpha_2\}$, then $(x * y)_{\max\{\alpha_1, \alpha_2\}} \ni f_n$. Suppose that $f_n(x * y) > \max\{\alpha_1, \alpha_2\}$. Then $\max\{f_n(x), f_n(y)\} \leq -0.5$. Otherwise, we have

$$f_n(x * y) \le \max\{f_n(x), f_n(y), -0.5\} = \max\{f_n(x), f_n(y)\} \le \max\{\alpha_1, \alpha_2\},\$$

a contradiction. It follows that

$$f_n(x * y) + \max\{\alpha_1, \alpha_2\} + 1 < 2f_n(x * y) + 1$$

$$\leq 2 \max\{f_n(x), f_n(y), -0.5\} + 1 = 0.$$

Thus $(x * y)_{\max\{\alpha_1, \alpha_2\}} \varrho f_n$. So, $(x * y)_{\max\{\alpha_1, \alpha_2\}} \ni \lor \varrho f_n$.

Let $a, b \in X$ and $\beta_1, \beta_2 \in (0, 1]$ be such that $(a, \beta_1) \in f_p$ and $(b, \beta_2) \in f_p$. Then $f_p(a) \ge \beta_1$ and $f_p(b) \ge \beta_2$. If $f_p(a * b) < \min\{\beta_1, \beta_2\}$, then $\min\{f_p(a), f_p(b)\} \ge 0.5$. Otherwise, we get

$$f_p(a * b) \ge \min\{f_p(a), f_p(b), 0.5\} \ge \min\{f_p(a), f_p(b)\} \ge \min\{\beta_1, \beta_2\},$$

which is a contradiction. Thus

 $f_p(a * b) + \min\{\beta_1, \beta_2\} > 2f_p(a * b) \ge 2\min\{f_p(a), f_p(b), 0.5\} = 1.$

So $(a * b, \min\{\beta_1, \beta_2\}) q f_p$. Hence, $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type $(\subseteq, \subseteq \lor Q)$.

We provide conditions for a bipolar-valued fuzzy set to be a bipolar-valued fuzzy subalgebra of type ($\mathcal{Q}, \Subset \lor \mathcal{Q}$).

Theorem 3.9. Let A be a subalgebra of X and let $f = (X; f_n, f_p)$ be a bipolar-valued fuzzy set such that

(3.8)
$$(\forall x \in X) \left(\begin{array}{c} x \in A \Rightarrow f_n(x) \leq -0.5, \ f_p(x) \geq 0.5, \\ x \notin A \Rightarrow f_n(x) = 0, \ f_p(x) = 0 \end{array} \right)$$

Then $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type $(\mathcal{Q}, \subseteq \lor \mathcal{Q})$.

Proof. Let $x, y, a, b \in X$ and $(\alpha_1, \beta_1), (\alpha_2, \beta_2) \in [-1, 0) \times (0, 1]$ be such that

$$\langle (x,y); (\alpha_1,\beta_1) \rangle \mathcal{Q}(X,f_n,f_p) \text{ and } \langle (a,b); (\alpha_2,\beta_2) \rangle \mathcal{Q}(X,f_n,f_p).$$

Then $x_{\alpha_1} \rho f_n$, $(y, \beta_1) q f_p$, $a_{\alpha_2} \rho f_n$ and $(b, \beta_2) q f_p$, i.e.,

$$f_n(x) + \alpha_1 + 1 < 0, f_p(y) + \beta_1 > 1, f_n(a) + \alpha_2 + 1 < 0 \text{ and } f_p(b) + \beta_2 > 1.$$

If $x \notin A$ or $a \notin A$, then $f_n(x) = 0$ or $f_n(a) = 0$. Thus $\alpha_1 + 1 < 0$ or $\alpha_2 + 1 < 0$. This is impossible, and so $x \in A$ and $a \in A$. Since A is a subalgebra of X, it follows that $x * a \in A$. Also, we get $y * b \in A$ because if it is impossible, then $y \notin A$ or $b \notin A$. Thus $f_p(y) = 0$ or $f_p(b) = 0$, which imply that $\beta_1 > 1$ or $\beta_2 > 1$. This is a contradiction. If $\max\{\alpha_1, \alpha_2\} < -0.5$, then $f_n(x * a) + \max\{\alpha_1, \alpha_2\} + 1 < 0$, i.e., $(x * a)_{\max\{\alpha_1, \alpha_2\}} \not o f_n$. If $\max\{\alpha_1, \alpha_2\} \ge -0.5$, then $f_n(x * a) \le -0.5 \le \max\{\alpha_1, \alpha_2\}$, i.e., $(x * a)_{\max\{\alpha_1, \alpha_2\}} \ni f_n$. Thus

$$(x*a)_{\max\{\alpha_1,\alpha_2\}} \ni \lor \varrho f_n.$$
899

Also, if $\min\{\beta_1, \beta_2\} > 0.5$, then $f_p(y * b) + \min\{\beta_1, \beta_2\} > 1$. So

 $(y * b, \min\{\beta_1, \beta_2\}) q f_p.$

If $\min\{\beta_1, \beta_2\} \le 0.5$, then $f_p(y * b) \ge 0.5 \ge \min\{\beta_1, \beta_2\}$, i.e.,

$$(y * b, \min\{\beta_1, \beta_2\}) \in f_p.$$

Hence $(y * b, \min\{\beta_1, \beta_2\}) \in \lor qf_p$. Therefore

$$\langle (x * a, y * b); (\max\{\alpha_1, \alpha_2\}, \min\{\beta_1, \beta_2\}) \rangle \Subset \lor \mathcal{Q}(X; f_n, f_p),$$

and consequently $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy subalgebra of type ($\mathcal{Q}, \subseteq \lor \mathcal{Q}$).

Theorem 3.10. Let $f = (X; f_n, f_p)$ be a bipolar-valued fuzzy subalgebra of type (\mathcal{Q} , $\Subset \lor \mathcal{Q}$). If $f = (X; f_n, f_p)$ is nonconstant on the negative and positive 0-supports of $f = (X; f_n, f_p)$, then $f_n(x) \le -0.5$ and $f_p(x) \ge 0.5$ for some $x \in X$. In particular, $f_n(0) \le -0.5$ and $f_p(0) \ge 0.5$.

Proof. Assume that $f_n(x) > -0.5$, for all $x \in X$. Since f_n is not constant on the negative 0-support of $f = (X; f_n, f_p)$, there exists $x \in N(f; 0)$ such that $\alpha_x = f_n(x) \neq f_n(0) = \alpha_0$. Then either $\alpha_0 < \alpha_x$ or $\alpha_0 > \alpha_x$. For the case $\alpha_0 < \alpha_x$, choose r < -0.5 such that $\alpha_0 + r + 1 < 0 < \alpha_x + r + 1$. Then $0_r \rho f_n$. Since $x_{-1} \rho f_n$, it follows that $x_r = (x * 0)_{\max\{r, -1\}} \ni \lor \rho f_n$. But, $f_n(x) > -0.5 > r$ implies that $x_r \exists f_n$ Also, $f_n(x) + r + 1 = \alpha_x + r + 1 > 0$ implies that $x_r \overline{\rho} f_n$. This is a contradiction.

Now, if $\alpha_0 > \alpha_x$ then we can take r < -0.5 such that $\alpha_x + r + 1 < 0 < \alpha_0 + r + 1$. Then $x_r \varrho f_n$, and $f_n(x * x) = f_n(0) = \alpha_0 > r = \max\{r, r\}$ induces that $(x * x)_{\max\{r, r\}} \exists f_n$. Since

$$f_n(x * x) + \max\{r, r\} + 1 = f_n(0) + r + 1 = \alpha_0 + r + 1 > 0,$$

 $(x * x)_{\max\{r,r\}} \overline{\varrho} f_n$. Thus $(x * x)_{\max\{r,r\}} \overline{\ni \lor \varrho} f_n$, which is a contradiction. So $f_n(x) \le -0.5$ for some $x \in X$.

Now, assume that $f_p(x) < 0.5$, for all $x \in X$. Since f_p is not constant on the positive 0-support of $f = (X; f_n, f_p)$, there exists $a \in P(f; 0)$ such that $\beta_a \triangleq f_p(a) \neq f_p(0) \triangleq \beta_0$. For the case $\beta_0 < \beta_a$, choose $\delta > 0.5$ such that $\beta_0 + \delta < 1 < \beta_a + \delta$. It follows that $(a, \delta) q f_p$, $f_p(a * a) = f_p(0) = \beta_0 < \delta = \min\{\delta, \delta\}$ and $f_p(a * a) + \min\{\delta, \delta\} = f_p(0) + \delta = \beta_0 + \delta < 1$ so that $(a * a, \min\{\delta, \delta\}) \in \forall q f_p$. This is a contradiction. If $\beta_0 > \beta_a$, we can take $\delta > 0.5$ such that $\beta_a + \delta < 1 < \beta_0 + \delta$. Then $(0, \delta) q f_p$ and $(a, 1) q f_p$, but

$$(a * 0, \min\{1, \delta\}) = (a, \delta) \,\overline{\in \, \forall \, q} \, f_p$$

since $f_p(a) < 0.5 < \delta$ and $f_p(a) + \delta = \beta_a + \delta < 1$. This is a contradiction, and hence $f_p(x) \ge 0.5$ for some $x \in X$. We now prove that $f_n(0) \le -0.5$ and $f_p(0) \ge 0.5$. Assume that $f_n(0) \triangleq \alpha_0 > -0.5$ or $f_p(0) \triangleq \beta_0 < 0.5$. Note that there exist $x, a \in X$ such that $f_n(x) \triangleq \alpha_x \le -0.5$ and $f_p(a) \triangleq \beta_a \ge 0.5$. It follows that $\alpha_x < \alpha_0$ and $\beta_0 < \beta_a$. Choose $(\alpha_1, \beta_1) \in [-1, 0) \times (0, 1]$ such that

 $\alpha_1 < \alpha_0 \text{ and } \alpha_x + \alpha_1 + 1 < 0 < \alpha_0 + \alpha_1 + 1$

and

$$\begin{array}{cc} \beta_1 > \beta_0 \quad \text{and} \quad \beta_0 + \beta_1 < 1 < \beta_a + \beta_1. \\ 900 \end{array}$$

Then $f_n(x) + \alpha_1 + 1 = \alpha_x + \alpha_1 + 1 < 0$ and $f_p(a) + \beta_1 = \beta_a + \beta_1 > 1$. Thus $x_{\alpha_1} \varrho f_n$ or $(a, \beta_1) q f_p$, i.e., $\langle (x, a); (\alpha_1, \beta_1) \rangle \mathcal{Q}(X; f_n, f_p)$. Now we have

$$f_n(x * x) + \max\{\alpha_1, \alpha_1\} + 1 = f_n(0) + \alpha_1 + 1 = \alpha_0 + \alpha_1 + 1 > 0$$

and

$$f_p(a * a) + \min\{\beta_1, \beta_1\} = f_p(0) + \beta_1 = \beta_0 + \beta_1 < 1.$$

Also, we get

$$f_n(x * x) = f_n(0) = \alpha_0 > \alpha_1 = \max\{\alpha_1, \alpha_1\}$$

and

$$f_{p}(a * a) = f_{p}(0) = \beta_{0} < \beta_{1} = \min\{\beta_{1}, \beta_{1}\}.$$

 $f_p(a * a) = f_p(0) = \beta_0 < \beta_1 = \min\{\beta_1, \beta_1\}.$ So $(x * x)_{\max\{\alpha_1, \alpha_1\}} \overline{\supset \forall \varrho} f_n$ and $(a * a, \min\{\beta_1, \beta_1\}) \overline{\in \forall q} f_p$. Hence

$$\langle (x * x, a * a); (\max\{\alpha_1, \alpha_1\}, \min\{\beta_1, \beta_1\}) \rangle \in \forall \mathcal{Q}(X; f_n, f_p).$$

This is a contradiction. Therefore $f_n(0) \leq -0.5$ and $f_p(0) \geq 0.5$.

Theorem 3.11. Given a bipolar-valued fuzzy set $f = (X; f_n, f_p)$, let $f^* = (X; f_n^*, f_p^*)$ be a bipolar-valued fuzzy set in which $f_n^*(x) = \max\{f_n(x), -0.5\}$ and $f_p^*(x) =$ min{ $f_p(x), 0.5$ }, for all $x \in X$. If $f = (X; f_n, f_p)$ is a bipolar-valued fuzzy sub-algebra of X of type ($\Subset, \Subset \lor Q$), then $f^* = (X; f_n^*, f_p^*)$ is a bipolar-valued fuzzy subalgebra of X.

Proof. Let $f = (X; f_n, f_p)$ be a bipolar-valued fuzzy subalgebra of X of type (\in , $\Subset \lor \mathcal{Q}$). For any $x, y \in X$, we have

$$f_n^*(x * y) = \max\{f_n(x * y), -0.5\} \\ \leq \max\{\max\{f_n(x), f_n(y), -0.5\}, -0.5\} \\ = \max\{\max\{f_n(x), -0.5\}, \max\{f_n(y), -0.5\}\} \\ = \max\{f_n^*(x), f_n^*(y)\}$$

and

$$f_p^*(x * y) = \min\{f_p(x * y), 0.5\}$$

$$\geq \min\{\min\{f_p(x), f_p(y), 0.5\}, 0.5\}$$

$$= \min\{\min\{f_p(x), 0.5\}, \min\{f_p(y), 0.5\}\}$$

$$= \min\{f_p^*(x), f_p^*(y)\}.$$

Then $f^* = (X; f_n^*, f_p^*)$ is a bipolar-valued fuzzy subalgebra of X.

References

- [1] M. Akram, W. Chen and Y. Yin, Bipolar fuzzy Lie superalgebras, Quasigroups Related Systems 20 (2012) 139-156.
- Y. S. Huang, BCI-algebra, Science Press, Beijing 2006.
- $[3]\,$ Y. B. Jun, M. S. Kang and H. S. Kim, Bipolar fuzzy hyper BCK -ideals in hyper BCK -algebras, Iran. J. Fuzzy Systs. 8 (2) (2011) 105-120.
- [4] Y. B. Jun, K. J. Lee and E. H. Roh, Ideals and filters in CI-algebras based on bipolar-valued fuzzy sets, Ann. Fuzzy Math. Inform. 4 (1) (2011) 109–121.
- [5] M. K. Kang and J. G. Kang, Bipolar fuzzy set theory applied to sub-semigroups with operators in semigroups, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 19 (1) (2012) 23-35.
- [6] C. S. Kim, J. G. Kang and J. M. Kang, Ideal theory of semigroups based on the bipolar valued fuzzy set theory, Ann. Fuzzy Math. Inform. 2 (2) (2011) 193-206.

- [7] K. J. Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc. 32 (2009) 361–373.
- [8] K. J. Lee and Y. B. Jun, Bipolar fuzzy a-ideals of BCI-algebras, Commun. Korean Math. Soc. 26 (4) (2011) 531–542.
- [9] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand (2000) 307–312.
- [10] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolarvalued fuzzy sets, J. Fuzzy Logic Intelligent Systems 14 (2004), 125–129.
- [11] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul 1994.
- [12] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [13] A. B. Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences 7 (11) (2009) 1404–1411.
- [14] N. Yaqoob, M. Aslam, I. Rehman and M. M. Khalaf, New types of bipolar fuzzy sets in Γ-semihypergroups, Songklanakarin J. Sci. Technol. 38 (2) (2016) 119–127.

YOUNG BAE JUN (skywine@gmail.com)

Primary Affiliation: Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

Secondary Affiliation: Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

<u>KUL HUR</u> (kulhur@wku.ac.kr)

Department of Mathematics, Wonkwang University, Iksan 54538, Korea